83 research outputs found

    A meta-analysis examining how fish biodiversity varies with marine protected area size and age

    Get PDF
    Marine protected areas (MPAs) are a well-established conservation practice worldwide, but their effectiveness in protecting or replenishing fish biodiversity remains uneven. Understanding the patterns of this heterogeneity is central to general guidelines for MPA design and can ultimately provide guidance on how to maximize MPA potential. Here, we examine associations between the degree of protection, duration of protection, and protected area size, with fish biodiversity inside of protected areas relative to that of sites nearby, but outside of protected areas. We quantitatively synthesize 116 published estimates of species richness from 72 MPAs and 38 estimates of Shannon entropy from 21 MPAs. We show that species richness is on average 18% (95% CIs: 10%–29%) higher in protected areas than in areas open to fishing; on average, Shannon entropy is 13% (95% CIs: −2% to 31%) higher within protected areas relative to outside. We find no relationship between the degree and duration of protection with the ratio of species richness inside versus outside of protected areas; both fully and partially protected areas contribute to the accumulation of species inside of protected areas, and protected areas of all ages contribute similarly on average to biodiversity conservation. In contrast to our expectations, increasing protected area size was associated with a decreased ratio of species richness sampled at sites inside versus outside of the protected area, possibly due, for example, to insufficient enforcement and/or low compliance. Finally, we discuss why meta-analyses such as ours that summarize effect sizes of local scale biodiversity responses, that is, those at a single site, can only give a partial answer to the question of whether larger protected areas harbor more species than comparable unprotected areas

    Effects of site‐selection bias on estimates of biodiversity change

    Get PDF
    Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site‐selection biases influence estimates of biodiversity change is largely unknown. Site‐selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site‐selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site‐selection bias. We used a simple spatially resolved, individual‐based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site‐selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site‐selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site‐selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site‐selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site‐selection bias, we recommend use of systematic site‐selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site‐selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data

    Larval survivorship and settlement of crown-of-thorns starfish (Acanthaster cf. solaris) at varying algal cell densities

    Get PDF
    The dispersal potential of crown-of-thorns starfish (CoTS) larvae is important in understanding both the initiation and spread of population outbreaks, and is fundamentally dependent upon how long larvae can persist while still retaining the capacity to settle. This study quantified variation in larval survivorship and settlement rates for CoTS maintained at three different densities of a single-celled flagellate phytoplankton, Proteomonas sulcata (1 x 10^3, 1 x 10^4, and 1 x 10^5 cells/mL). Based on the larval starvation hypothesis, we expected that low to moderate levels of phytoplankton prey would significantly constrain both survival and settlement. CoTS larvae were successfully maintained for up to 50 days post-fertilization, but larval survival differed significantly between treatments. Survival was greatest at intermediate food levels (1 x 10^4 cells/mL), and lowest at high (1 x 10^5 cells/mL) food levels. Rates of settlement were also highest at intermediate food levels and peaked at 22 days post-fertilization. Peak settlement was delayed at low food levels, probably reflective of delayed development, but there was no evidence of accelerated development at high chlorophyll concentrations. CoTS larvae were recorded to settle 17–43 days post-fertilization, but under optimum conditions with intermediate algal cell densities, peak settlement occurred at 22 days post-fertilization. Natural fluctuations in nutrient concentrations and food availability may affect the number of CoTS that effectively settle, but seem unlikely to influence dispersal dynamics

    Landscape-scale forest loss as a catalyst of population and biodiversity change

    Get PDF
    The BioTIME database was supported by ERC AdG BioTIME 250189 and ERC PoC BioCHANGE 727440. We thank the ERC projects BioTIME and BioCHANGE for supporting the initial data synthesis work that led to this study, and the Leverhulme Centre for Anthropocene Biodiversity for continued funding of the database. Also supported by a Carnegie-Caledonian PhD Scholarship and NERC doctoral training partnership grant NE/L002558/1 (G.N.D.), a Leverhulme Fellowship and the Leverhulme Centre for Anthropocene Biodiversity (M.D.), Leverhulme Project Grant RPG-2019-402 (A.E.M. and M.D.), and the German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (funded by the German Research Foundation; FZT 118, S.A.B.).Global biodiversity assessments have highlighted land-use change as a key driver of biodiversity change. However, there is little empirical evidence of how habitat transformations such as forest loss and gain are reshaping biodiversity over time. We quantified how change in forest cover has influenced temporal shifts in populations and ecological assemblages from 6090 globally distributed time series across six taxonomic groups. We found that local-scale increases and decreases in abundance, species richness, and temporal species replacement (turnover) were intensified by as much as 48% after forest loss. Temporal lags in population- and assemblage-level shifts after forest loss extended up to 50 years and increased with species’ generation time. Our findings that forest loss catalyzes population and biodiversity change emphasize the complex biotic consequences of land-use change.PostprintPeer reviewe

    A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients

    Get PDF
    Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America Disentangling the drivers of diversity gradients can be challenging. The Measurement of Biodiversity (MoB) framework decomposes scale-dependent changes in species diversity into three components of community structure: species abundance distribution (SAD), total community abundance, and within-species spatial aggregation. Here we extend MoB from categorical treatment comparisons to quantify variation along continuous geographic or environmental gradients. Our approach requires sites along a gradient, each consisting of georeferenced plots of abundance-based species composition data. We demonstrate our method using a case study of ants sampled along an elevational gradient of 28 sites in a mixed deciduous forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed that decreases in ant species richness along the elevational gradient were associated with decreasing evenness and total number of species, which counteracted the modest increase in richness associated with decreasing spatial aggregation along the gradient. Total community abundance had a negligible effect on richness at all but the finest spatial grains, SAD effects increased in importance with sampling effort, and the aggregation effect had the strongest effect at coarser spatial grains. These results do not support the more-individuals hypothesis, but they are consistent with a hypothesis of stronger environmental filtering at coarser spatial grains. Our extension of MoB has the potential to elucidate how components of community structure contribute to changes in diversity along environmental gradients and should be useful for a variety of assemblage-level data collected along gradients

    Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change

    Get PDF
    Little consensus has emerged regarding how proximate and ultimate drivers such as productivity, disturbance and temperature may affect species richness and other aspects of biodiversity. Part of the confusion is that most studies examine species richness at a single spatial scale and ignore how the underlying components of species richness can vary with spatial scale. We provide an approach for the measurement of biodiversity that decomposes changes in species rarefaction curves into proximate components attributed to: (a) the species abundance distribution, (b) density of individuals and (c) the spatial arrangement of individuals. We decompose species richness by comparing spatial and nonspatial sample- and individual-based species rarefaction curves that differentially capture the influence of these components to estimate the relative importance of each in driving patterns of species richness change. We tested the validity of our method on simulated data, and we demonstrate it on empirical data on plant species richness in invaded and uninvaded woodlands. We integrated these methods into a new r package (mobr). The metrics that mobr provides will allow ecologists to move beyond comparisons of species richness in response to ecological drivers at a single spatial scale toward a dissection of the proximate components that determine species richness across scales

    Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance

    Get PDF
    1. Protected areas are central to biodiversity conservation. For marine fish, marine protected areas (MPAs) often harbour more individuals, especially of species targeted by fisheries. But precise pathways of biodiversity change remain unclear. For example, how local-scale responses combine to affect regional biodiversity, important for managing spatial networks of MPAs, is not well known. Protection potentially influences three components of fish assemblages that determine how species accumulate with sampling effort and spatial scale: the total number of individuals, the relative abundance of species and within-species aggregation. Here, we examined the contributions of each component to species richness changes inside MPAs as a function of spatial scale. 2. Using standardized underwater visual survey data, we measured the abundance and species richness of reef fishes in 43 protected and 41 fished sites in the Mediterranean Sea. 3. At both local and regional scales, increased species evenness caused by added common species in MPAs compared to fished sites was the most important proximate driver of higher diversity. 4. Site-to-site variation in the composition (i.e. β-diversity) of common species was also higher among protected sites, and depended on sensitivity to exploitation. There were more abundant exploited species at regional scales than at local scales, reflecting a tendency for different protected sites to harbour different exploited species. In contrast, fewer abundant unexploited species were found at the regional scale than at the local scale, meaning that relative abundances at the regional scale were less even than at the local scale. 5. Synthesis and applications. Although marine protected areas (MPAs) are known to strongly influence fish community abundance and biomass, we found that changes to the relative abundance of species (i.e. increased evenness) dominated the biodiversity response to protection. MPAs had more relatively common species, which in turn led to higher diversity for a given sampling effort. Moreover, higher β-diversity of common species meant that local-scale responses were magnified at the regional scale due to site-to-site variation inside protected areas for exploited species. Regional conservation efforts can be strengthened by examining how multiple components of biodiversity respond to protection across spatial scales

    Linking changes in species composition and biomass in a globally distributed grassland experiment

    Get PDF
    Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.EEA Santa CruzFil: Ladouceur, Emma. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Ladouceur, Emma. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Ladouceur, Emma. University of Leipzig. Department of Biology; AlemaniaFil: Ladouceur, Emma. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Blowes, Shane A. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Blowes, Shane A. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Chase, Jonathan M. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Chase, Jonathan M. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Clark, Adam T. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Clark, Adam T. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Clark, Adam T. Karl-Franzens University of Graz. Institute of Biology; Austria.Fil: Garbowski, Magda. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Garbowski, Magda. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Laboratorio de Ecología. Mar del Plata; Argentina.Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Arnillas, Carlos Alberto. University of Toronto. Department of Physical and Environmental Sciences; Canadá.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Barrio, Isabel C. Agricultural University of Iceland. Faculty of Environmental and Forest Sciences; IslandiaFil: Bharath, Siddharth. Atria University; India.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Harpole, Stanley. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Harpole, Stanley. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaMartin Luther University Halle-Wittenberg. Institute of Computer Science; Alemani

    Prevenção do câncer de colo uterino

    Get PDF
    O câncer do colo uterino constitui um grave problema de saúde pública, atingindo todas as camadas sociais e regiões geoeconômicas do país. Definido como afecção progressiva, o câncer de colo uterino é caracterizado por alterações intra-epiteliais cervicais, que podem se desenvolver para um estágio invasivo em longo prazo, tendo etapas bem definidas e de lenta evolução, sendo que este tipo de câncer permite sua interrupção a partir de um diagnóstico precoce e do tratamento oportuno que poderá apresentar custos reduzidos. Assim, as medidas de prevenção são consideradas de suma importância e envolvem o rastreamento de lesões na população sintomática e assintomática, podendo ser identificado o grau das mesmas e o tratamento ser adequado. Neste estudo foi realizado uma revisão narrativa, de trabalhos vinculados a Biblioteca Virtual de Saúde, realizados no período de 2000 a 2012 com o objetivo de discorrer sobre aspectos epidemiológicos, fisiopatológicos e de prevenção do câncer de colo uterino. O PSF se torna, cada vez mais, um instrumento de estratégia no combate ao câncer do colo do útero. Os profissionais devem aproveitar todas as oportunidades de contato com as mulheres para reforçar orientações, sanar dúvidas, conhecimentos, direitos em relação a sua saúde, sendo assim, atenção especial à educação em saúde. Há ainda muitas barreiras que impedem as mulheres ao acesso a educação e promoção da saúde, principalmente quanto ao câncer de colo de útero. Este fato mostra que as campanhas de prevenção e ou detecção precoce desta doença não têm sido bem sucedidas, apesar do amplo conhecimento que este tipo de câncer continua sendo uma séria ameaça para a população brasileira
    corecore